
1

1

A Tutorial on Software
Reuse in Safety-Critical

Systems

Leanna Rierson
(Leanna.Rierson@faa.gov)

June 6, 2001

2

Outline

• What is Reuse?
• Pros/Cons of Reuse
• Reuse Myths
• Why Reuse Isn’t Used Much
• 7 Concepts Relevant to Reuse
• Successful Reuse – Pulling It All Together
• FAA Activities Related To Reuse
• Summary

2

3

4

What is Reuse?

• A hot buzzword?
• The newest silver bullet?
• Something greatly desired, but ever so

elusive?
• Real and practical?

“If you ask five programmers what reuse is,
you’ll get eight answers” (Steve Adolf)

3

5

What is Reuse? (cont)

• Software Reuse != Software Salvaging
(Adolf)
– Software reuse is software that is designed

to be reused
– Software salvaging is using software that

was not designed for reuse
• We do a lot of “salvaging” in the aviation

world today, but we want to do more
“reusing”

6

What is Reuse? (cont)

• A process of implementing or updating software
systems using existing software assets. (Sodhi)
– Assets can be software components, objects, software

requirement analysis and design models, domain
architecture, database schema, code documentation,
manuals, standards, test scenarios, and plans.

– Software reuse may occur within a software system,
across similar systems, or in widely different systems.

• Software reuse is the process of creating software
systems from existing software assets, rather than
building software systems from scratch. (Krueger)

4

7

What is Reuse? (cont)

• Goal of reuse: To use as much software
data as possible from previous
development efforts in order to reduce
time, cost, and risks associated with re-
development.

“Reuse is a bet on the future” (Williams)

8

5

9

Potential Benefits of Reuse

• Meeting business needs (addressing
the software crisis)

• Higher productivity
• Increased quality
• Quicker time to market
• Better use of resources
• Helps with system complexity issues

“Systematic reuse has the highest payback
of any technology since software began.” (Williams)

10

Potential Risks of Reuse

• It requires more upfront investment
• It is a bit of a gamble on the future
• It can end up costing more, if not

done properly
• It can induce errors, if not done

properly
• It must be used cautiously in

safety-critical domains

6

11

12

Reuse Myths

• Reuse is quick, easy, simple, & free.
• Buying components means no building.
• Components equal reuse.
• Reuse is just code.
• Maintenance is not building, therefore reuse

does not apply.
• Increase productivity means loss of jobs.
• Reuse means everyone must do the same

thing.

7

13

14

Why Reuse Has Not Been
Utilized Much

• It isn’t taught in schools
• We have the “not invented here” attitude
• Cost is believed to be prohibitive
• Time constraints
• Culture
• Lack of experience
• Lack of tools
• Not understanding what reuse really is

8

15

16

7 Concepts Relevant to
Reuse

• Planning for Reuse
• Domain Engineering
• Software Components
• Object-Oriented Technology
• Portability
• Commercial-off-the-shelf (COTS)

Software
• Product Service History

9

17

“If you don’t know where you are going,
any road will lead you there.” (eastern saying)

18

Planning for Reuse

• Reuse doesn’t just happen.
• Reuse must be well planned.
• Reuse must be well managed.

10

19

Reifer’s 10 Steps To
“Reuse Adoption”

• Define the company vision/strategy
• Determine company’s current reuse status
• Establish an operation concept for the company
• Develop a company business plan
• Focus early efforts on company infrastructure
• Make an initial success
• Try the ideas before they are solidified
• Strive for a success image
• Iterate & refine the process based on results

20

McConnell’s Keys to
Success in Reuse

• Take advantage of personnel continuity between
old & new programs

• Do not overestimate your savings
• Secure long-term, high-level management

commitment to a reuse program
• Make reuse an integral part of the development

process
• Establish a separate reuse group
• Focus on small, sharp, domain-specific

components.
• Focus design efforts on abstraction & modularity.

11

21

Things To Be Addressed
In Planning

• Reifer’s Steps
• McConnell’s Keys
• Safety
• Software/Software and

Software/Hardware Integration
• Portability
• Maintenance
• Re-Verification

22

12

23

What is Domain
Engineering?

• Domain is a group or family of related
systems. All systems in that domain
share a set of capabilities and/or data.
(Sodhi)

• Two Sides of Reuse:
– Domain engineering � Developing for reuse
– Reuse engineering � Developing with reuse

• Domain engineering is a developing field
– it is still relatively immature

24

Some Concepts of
Domain Engineering

• Knowledge reuse
• Repositories of components
• Reuse of architectural domain

knowledge
• Reuse of software designs and patterns
• Reduction of “cognitive distance”

Cognitive distance is the intellectual effort required
to take a software system from one stage

of development to another (Girardi/Ibrahim)

13

25

26

What Is A Component?
1. Prewritten elements of software with clear

functionality and well-defined interface. (Rhodes)

2. An atomic software element that can be reused
or used in conjunction with other components; ideally,
it should work without modification and without the
engineer needing to know the content and internal
function of the component. However, the interface,
functionality, pre-conditions, and post-conditions
performance characteristics and required supporting
elements must be well known. (Lattanze)

14

27

What Is A Component? (cont)

• 8110.RSC �Reusable software
component (RSC) is the software code
and its supporting DO-178B
documentation being considered for
reuse. It forms a portion of the software
that will be implemented by the
integrator/applicant.

28

Examples of Components

• Real-time operating systems
• Software libraries
• Loading software
• Communication protocol stacks

A component is a piece of software and/or data
 that can be “chunked” by itself.

15

29

Key Properties of a
Software Component

• The component may be
used by other program
elements.

• The users and
developers of the
software component do
not need to know each
other. (Meyer)

30

3 Attributes of Software
Components

• It is reusable
• It has clear functionality

– Single purpose
– Encapsulates related functions
– Properly sized

• It has well-defined interfaces
– E.g., consistent syntax, logical design, predictable

behavior, & consistent method of error handling.
– Complete, consistent, & cohesive interfaces

16

31

8 Qualities of Software
Components (Meyer)

• Careful specification of functionality &
interface

• Correctness – works as specified
• Robustness – doesn’t fail if used properly
• Ease of identification
• Ease of learning
• Wide-spectrum of coverage
• Consistency
• Generality – useful for multiple environments

32

Component Library

• Contains software
components/assets to be
reused throughout a company

• Library should:
– Provide seamless access to

authorized users
– Be searchable & browsable
– Be integrated into the

engineering environment

17

33

Component Library (cont)

• Items in the library should contain:
– Design narratives – an overview of the

component
– All data that supports the component (e.g.,

plans, requirements, design, verification
records, etc.)

– Design rationale – detailed explanation of
design decisions

34

Component Library (cont)

• Design Rationale
– Communicates the design decisions and

can help users determine if it meets their
needs

– Internal Design Rationale – describes
internal interaction within the component

– External Design Rationale – describes
interaction of the component with the
outside world

18

35

Component Library (cont)

• Aspects of Libraries to be Considered:
– Format of components & assets entered

into the library should be useful &
consistent

– Best utilization of search capabilities
– Library management, operation, &

maintenance

36

Components & Safety –
Items to Consider

• Planning
• Traceability of requirements
• Re-verification
• Interface documents
• Partitioning/protection
• Artifacts
• Maintenance
• Unused code

19

37

38

● IEEE Definition of OOT: “A software
development technique in which a system or
component is expressed in terms of objects
and connections between those objects”

● Centered around “objects” and “classes”

OOT Overview

Message 1 Message 2Object

20

39

● Definition of Class: “a
set of objects that
share a common
structure and a
common behavior”
(Booch)

OOT Overview
(2/7) Class Name

Attributes:

Operations:

40

 Typical
– abstraction
– modularity
– concurrency
– persistence

OOT Overview (3/7)

 Unique to OOT
– **encapsulation
– **hierarchy
– **typing

21

41

● Abstraction: Helps to address complexity by providing
crisply defined boundaries.

● Modularity: The process of partitioning a program into
logically separated and defined components that possess
defined interactions and limited access to data.

● Concurrency: Process of carrying out several events
simultaneously.

● Persistence: Property of an object through which its
existence transcends time and/or space.

OOT Overview (4/7)

42

● Encapsulation:
● The mechanism that binds together code and the data it

manipulates

● Keeps code and data safe from outside interference and
misuse

● Generally achieved through information hiding

OOT Overview (5/7)

22

43

● Hierarchy: The ordering of abstractions.

● Examples of hierarchy: single inheritance and multiple
inheritance

● Sub-class “inherits” all of the existing attributes and
operations of the original class, called the “parent” or
“superclass”

OOT Overview (6/7)

44

● Typing: Enforcement of the class of an object, such that

objects of different types may not be interchanged, or at
the most, they may be interchanged only in very restricted
ways

● Polymorphism is a concept closely related to typing.

● Polymorphism comes from the Greek meaning “many
forms.”

OOT Overview (7/7)

23

45

OOT Methodology

OOA = Object-Oriented Analysis

OOD = Object-Oriented Design

OOP = Object-Oriented Programming

OOV/T = Object-Oriented Testing

46

OOA
Identify user
requirements

(use cases)

Identify classes
(attributes &

operations) (CRC)

Specify class
hierarchy

(CRC)

Identify object-
to-object

relationships (OR)

Model object
 behavior (OB)

R
eapply as needed

24

47

OOD

• Blueprint for software construction.
• Four layers of design are usually

defined:
– subsystem layer,
– class and object layer,
– message layer, and
– responsibilities layer.

48

OOP

• Examples: SmallTalk, Java, C++, Ada
95

• C++ starting to be used in airborne
avionics

• Some concerns: dynamic memory
allocation, multiple inheritance, virtual
base classes, run-time identification,
templates, exceptions, and namespaces
are deleted

25

49

OOV/T

• Process of detecting errors and
verifying correctness of the OOA, OOD,
and OOP. OOV/T

• Includes reviews, analyses, and tests of
the software design and implementation

50

OOV/T

• OOV/T requires slightly different strategies
and tactics than the traditional structured
approach.
– Because of inheritance, encapsulation, and

polymorphism.

• Most developers use a “design for testability”
approach to begin addressing any
verification/test issues early in the program.

26

51

How OO Supports Reuse

• OOT helps to break complex systems
into manageable pieces

• It’s easier to implement OO design into
code (using OO languages)

• OO model-based approach supports
use of development tools

52

Safety Concerns of OOT

• Dead/Deactivated Code
• Dynamic Binding/Dispatch
• Encapsulation
• Inheritance
• Polymorphism

27

53

54

Portability

• Goal of portability is transporting
software to new platforms and/or
environments with minimal adaptation.

• Portability is a desirable attribute for
most software intended for reuse.

28

55

Portability Design
Strategies

• Identify the minimum necessary set of
environmental requirements &
assumptions.

• Eliminate all unnecessary assumptions
throughout the design.

56

Portability Design
Strategies (cont)

• Identify specific environment interface required.
For each interface, either:
– Encapsulate the interface completely in a suitable

module, package, object, etc; or
– Identify a suitable standard for the interface, which is

expected to be available in most target environments.
• Anticipate the need to provide a software layer to

“bridge the gap” for environments which don’t
meet the interface assumptions.

29

57

Technical Considerations
of Portability

• Classification
– Classify complete applications according to

their environmental interfaces &
requirements

• Specification of portability requirements
must be effective

• how much portability is needed
• what kind of environments will be used
• what costs can be accepted to achieve

portability

58

Technical Considerations
of Portability (cont)

• Measurement
– Ways to measure portability-based cost &

effectiveness
• Design

– Portability has significant impact on the
design process

• Cultural Adaptation
– Adapting to the conventions of new

environments & users

30

59

Technical Considerations
of Portability (cont)

• Verification & Validation
– Verification activities, such as reviews, analysis, &

testing are needed to ensure correctness in all
applications & implementations.

• Common Problems With Portability
– OS inconsistencies
– Different compiler options/effects
– Incompatible libraries
– Run-time problems
– Underestimation of integration effort
– Architectural inconsistency

60

Real-Time Issues for
Portability

• Timing
• Memory Allocation
• Memory Deallocation
• Dynamic Task Creation
• Scheduling Control
• Synchronization & Communication
• Events & Input/Output
• File Access

31

61

62

COTS Software
Definitions

• RTCA/DO-178B: Commercially available applications
sold by vendors through public catalog listings. COTS
software is not intended to be customized or
enhanced. Contract-negotiated software developed
for a specific application is not COTS software.

• FAA Research Report: Any software product that is
not developed within a given company for a specific
application for that company. In particular,
information regarding the software product’s
development and fabrication is not known or not
available to the user of the COTS product. (Krodel)

32

63

Two Classes of COTS

• Class 1 – Integrity Unknown
– No access to software life cycle data
– Level D
– FAA Notice 8110.82 (now 8110.92)

• Class 2 – COTS with Integrity
– Developed using DO-178B
– Software life cycle data exists
– Potentially to Level A
– FAA Draft Notice 8110.RSC

64

33

65

Product Service History
Definition

• A contiguous period of time during
which the software is operated within a
known environment, and during which
successive failures are recorded. (DO-
178B)

66

Acceptability Depends On

• Configuration management of the
software

• Effectiveness of problem reporting
• Stability and maturity of the software
• Relevance of product service history

environment
• Actual error rates and product service

history
• Impact of modifications

34

67

Attributes To Be
Evaluated

• Service duration length
• Change control during service
• Proposed use versus service use
• Proposed environment to service environment
• Number of significant mods during service

– Hardware mods & software mods
• Error detection capability
• Error reporting capability
• Number of in-service errors
• Amount/quality of service history data available

and reviewed

68

Service History
Conclusions

• Currently, it is hard to make a case for
product service history.

• FAA is sponsoring research in this area.

35

69

70

Characteristics of Organizations
with Highest Reuse

• Use a product-line approach
• Utilize an architecture which standardizes

interfaces and data formats
• Use common software architecture across

product lines
• Implement a design for manufacturing

approach
• Use domain engineering
• Have a defined software reuse process
• Management understands reuse issues.

36

71

Characteristics of Organizations
with Highest Reuse (cont)

• Have software reuse advocate(s) in
senior management

• Employ state-of-the-art reuse tools and
methods

• Reuse more than just code (e.g.,
requirements and design)

• Trace end-user requirements to the
components which support them

Rine/Sonnerman

72

• Before you can reuse something, you
need to:
• Find it
• Know what it does
• Know how to reuse it

~ Tracz ~

37

73

REBOOT – Reuse Maturity
Model (RMM)

• REBOOT = REuse Based on Object
Oriented Techniques

• Implements 5 Levels Like the SEI
Capability Maturity Model

74

REBOOT – Reuse Maturity
Model (RMM) (cont)

• Level 1 – Initial or Chaotic
– No planned reuse
– Only unintentional reuse occurring

• Level 2 – Repeatable
– Project-to-project reuse
– Limited scope
– No overall reuse strategy

38

75

REBOOT – Reuse Maturity
Model (RMM) (cont)

• Level 3 – Defined
– Defined company-wide reuse strategy
– Defined processes allow for ruese

across the company
– Company-wide reuse library
– Each project is evaluated for reuse

potential in accordance with the
company’s reuse strategy

76

REBOOT – Reuse Maturity
Model (RMM) (cont)

• Level 4 – Managed
– Reuse processes and reusable assets of the

company are controlled and understood in
detail.

• Level 5 – Optimized
– Quantitative feedback
– Continously improve reuse processes &

assets
– Innovative ideas are evaluated and applied

39

77

REBOOT – Reuse Maturity
Model (RMM) (cont)

• Key Reuse Areas
– Reuse commitment
– Project management
– Asset management
– Metrics
– Development process

78

40

79

FAA Reuse-Related
Activities

• Notice 8110.Reuse
• Notice 8110.RSC
• COTS Research Project
• OO Research Project
• Service History Research Project
• Integrated Modular Avionics Team
• Plan for Tool Qual Reuse Policy
• SC-190 Activities

80

41

81

Summary

• There are many things to consider in reuse
• There are many techniques/tools to help
• The following issues must be addressed to be

successful:
– Top level management support
– Modified development process
– Overcoming non-technical inhibitors
– Create an incentive program
– Establish reuse measurements
– Develop reuse guidelines
– Focus on a single domain

82

Summary (cont)

• Safety must be a priority
• FAA has several initiatives underway to

enable reuse

